Analytical Uncertainty Propagation in Life Cycle Inventory and Impact Assessment: high-efficiency versus conventional hand dryers

Olivier Jolliet¹
Jinglan Hong¹
Ralph Rosenbaum²
and Jon Dettling³

¹: University of Michigan, Ann Arbor, MI, USA
²: CIRAIG, Ecole Polytechnique de Montreal, Canada
³: Quantis US, Boston
1. Introduction

- Uncertainty analysis is essential to inform the decision maker on the reliability of the information.

- Typically for an LCA want to know the degree of confidence in the information that impact of scenario A is lower than B or $A/B < 1$.

- Different types of uncertainty (Model, parameter) + variability. Focus is to look at the contribution of parameter uncertainty.
2. Method Monte Carlo and sensitivity

Monte-Carlo

- Advantage to avoid to define output distribution…but
- Rather resource intensive
- Difficult to assess contributions of individual parameters
- Only accounts for parameter uncertainty

Alternative approaches to effectively estimate uncertainty contributions are highly needed.

Combining uncertainty propagation in LCI and LCIA phases is important

Sensitivity

\[
S_i = \frac{\% \Delta \text{Output}_i}{\% \Delta \text{Input}_i} = \frac{\Delta O/O}{\Delta I/I}
\]

1 variable at a time
do not account for inputs uncertainty
Log-normal distributions:

Lognormal:
- μ is the median
- GSD^2 is the Geometric squared standard deviation or coefficient of variation:

$$GSD^2$$

$$\frac{\mu}{GSD^2}$$

$$\mu*GSD^2$$

$$probability \left\{ \frac{\mu}{GSD^2} < X < GSD^2 \cdot \mu \right\} = 0.95$$

if $GSD^2 = 2$, 95% twice lower to twice higher
Method- Taylor series expansion

\[\text{Geometric standard deviation on output} \]

\[GSD_O^2 = \exp \left[\sum_i S_{I_i}^2 (\ln GSD_{I_i}^2)^2 \right]^{1/2} \]

Sensitivity to input parameter \(i \)

Assumptions:
1) Lognormal distribution
2) Independence of all inputs
3) Linear first-order kinetics

MacLeod et al., 2002, More general form by Heijungs et al., 1995
Comparison of 2.5% lower and 95% upper limit: Taylor vs Monte-Carlo: front end panel
Case study: hands dryer

Function:
- XLERATOR Dryer: 10s.
- Conventional Dryer: 30s.
- Paper Towels

Functional Unit:
- 1 pair dried hands

Objective:
Compare the climate change impact of three types of hand dryers

Comparison:
- XLERATOR Dryer: transport over car lifetime
- Conventional Dryer
- Paper Towels
Climate change impacts

![Graph showing climate change impacts for different scenarios.](chart.png)
Input data

Square of the geometric standard deviation
(95% confidence interval: between μ/SD_{95} and μ/SD_{95})

$$SD_{95} = \exp\sqrt{\ln(U_1)^2+\ln(U_2)^2+\ln(U_3)^2+\ln(U_4)^2+\ln(U_5)^2+\ln(U_6)^2+\ln(U_b)^2}$$

Ub Basic uncertainty factor

U1 Uncertainty factor for reliability,
U2 Uncertainty factor for completeness,
U3 Uncertainty factor for temporal correlation,
U4 Uncertainty factor for la geographic correlation,
U5 Uncertainty factor for other technological correlation,
U6 Uncertainty factor for sample size,

Example Aluminum:

$$SD_{95} = \exp\sqrt{\ln(1,00)^2+\ln(1,02)^2+\ln(1,00)^2+\ln(1,02)^2+\ln(1,00)^2+\ln(1,20)^2+\ln(1,05)^2} = 1.21$$
Comparison of single scenarios
Based on these distributions, one might think that the probability that scenario A is higher than scenario B is the area of intersection
Distribution: log-normal - overlapping

- HOWEVER, the two scenarios are always dependent → depend on the same parameters.
- Therefore when one set of parameters \((p_1, p_2, p_3)\) yields a high result in scenario A, it is likely to also yield a high result in scenario B.
- Difference is generally more robust in LCA → Run A and B in parallel and determine \(P(A-B>0)\) or \(P(A/B>1)\)
Method - Taylor series expansion scenario comparison A/B

\[
\left(\frac{\ln GSD_A}{B} \right)^2 = \sum_{i} S_{A_i}^2 \left(\ln GSD_i \right)^2 + \sum_{j=i+1}^{m} S_{B_j}^2 \left(\ln GSD_j \right)^2 + \sum_{k=m+1}^{n} \left(S_{A_k} - S_{B_k} \right)^2 \left(\ln GSD_k \right)^2
\]

- Independent parameters for scenarios A and B
- Sum of all parameters
- Common parameters to A and B
 - Take the difference in sensitivity

\[
P \left(\frac{A}{B} < 1 \right) = \frac{1}{2} + \frac{1}{2} \text{erf} \left[\frac{-\xi_A}{\ln GSD_A \sqrt{2}} \right]
\]
P (A/B<1)

XLERATOR / Standard Dryer

XLERATOR / Paper Towels (0%)

XLERATOR / Paper Towels (100%)

Standard Dryer / Paper Towels (0%)

Standard Dryer / Paper Towels (100%)

Paper Towels (0%) / Paper Towels (100%)
Main parameters contributing to uncertainty

- Xlerator/Standard
- Xlerator/Paper
- Xlerator/100% recycled
- Standard/Paper
- Standard/Recycled
- Paper/Recycled

- Other
- Electronic component
- Paper disposal
- Sulphate pulp
- Transport lorry
- Electricity US
Test of log normality: the only hypothesis is that the output is lognormal.
5. Conclusions

- Demonstrates the feasibility of this method and illustrates its simultaneous and consistent application to both inventory and impact assessment.

- This simple and reliable approach can easily show the contribution of each process.

- This detailed and modular approach coupled with a LCA is a very relevant and efficient way to get an accurate overall LCA uncertainty.

- The fairly simple procedure very strongly reduce calculation time. Because the approximate method relies on representative GSD2 and therefore needing little calculation resources was presented.
2. Methodology-Approach method

- Determine the output sensitivity to each input parameter

- Assesses the overall coefficient of variation on the final result as a function of the coefficient of variation of each individual input.

- The advantage of this procedure is to explicitly provide the contribution from each parameter as well as very strongly reduce calculation time.

- Compare results with Monte-Carlo analysis. Probability distributions obtained with this approach are compared to classical Monte Carlo distributions for test scenarios.
Case study Car front end panel

Car front-end panel

Function:
transport over car lifetime

Functional Unit:
1 front-end panel of equivalent rigidity for a 200'000 km service.

Objective:
Compare the climate change impact of a **steel** versus an **aluminium** front end panel
1. Introduction

2. Method

3. Single scenario

4. Comparing scenario

5. Conclusions

Process tree – steel (263 kg CO₂equ/FU)

15.5 kg Steel
GSD² = 1.1

39 kWh
GSD² = 1.1

99 MJ
GSD² = 1.1

80 l gasoline
GSD² = 1.03

CO₂ emissions
2.4 kg CO₂/kg gas
GSD² = 1.1
Process tree – aluminium (173 kg CO$_2$ eq/FU)

- 5.9 kg Alu, GSD2=1.1
- 16 kWh, GSD2=1.1
- 77 MJ, GSD2=1.1
- CO$_2$ emissions: 2.4 kg CO$_2$/kg gas, GSD2=1.1
- 30 l gasoline, GSD2=1.03
4. Results - For single scenario

- **Monte carlo**
 - Steel: $GSD^2 = 1.11 - 1.12$
 - Alu.: $GSD^2 = 1.08 - 1.10$

- **Taylor series**
 - Steel: $GSD^2 = 1.09$
 - Alu.: $GSD^2 = 1.10$
This Taylor extension serie is appropriate to easily determine the contribution of each process.
Relationship between Taylor serie - Monte Carlo for GSD2 in single scenario

GSD2 calculated by using Taylor serie consistent with Monte carlo
1. Introduction
2. Method
3. Single scenario
4. Comparing scenario
5. Conclusions

Process tree – steel (263 kg CO\textsubscript{2} equ/FU)

- **15.5 kg Steel**
 - GSD2 = 1.1

- **39 kWh**
 - GSD2 = 1.1

- **99 MJ**
 - GSD2 = 1.1

- **80 l gasoline**
 - GSD2 = 1.03 \rightarrow 1.77

Independent CO\textsubscript{2} emissions: 2.4 kg CO\textsubscript{2}/kg gas

Dependent CO\textsubscript{2} emissions: GSD2 = 1.1 \rightarrow 2.0
Equal uncertainty on equal scenario, independent vs dependent

A-B>0?

Varying the same parameter (dependent)

Probability

A-B<0 = 0.2%

Varying independent parameters

Probability

A-B<0 = 6%

Scenario

Steel-Alu. Crosses Zero
For comparing two scenarios

\[\ln \frac{GSD_A^2}{B} = \ln GSD_A^2 + \ln GSD_B^2 + 2 \text{Cov} (\ln Y_B, \ln Y_B) \]

\[\frac{GSD_A^2}{GSD_B^2} = \frac{GSD_A^2}{GSD_B^2} \leq GSD_A^2 GSD_B^2 \]

- Fully positively correlated
- Independent
- Fully negatively correlated

\[GSD_{Steel}^2 \text{Alu.} = 0.99 - 1.14 \]
Results - For comparison two scenarios: Steel / Alu.

Fig. 3 Comparison of Monte-Carlo and Taylor series for steel-aluminum scenario

Taylor series
- Fully positively correlated
- Fully negatively correlated
- Independent

Since, most cases in LCA is positively correlated

\[
\frac{GSD_{\text{Steel}}^2}{GSD_{\text{Alu}}^2} = 0.99 - 1.14
\]